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Benzoyl-substituted hemithioindigo 1 has a novel type of
photochromic behavior based on the formation of the photoin-
duced [2+4] cycloadduct; that is, irradiation of 1 produces the
cycloadduct 2 with all trans-configurations between the adjacent
carbonyl moieties; this is completely dissociated back to 1 on
heating.

Photochromic molecules provide a tool, with which one can
manipulate the ability to recognize a binding site.1 Typical pho-
tochromic molecules, such as azobenzenes,2 stilbenes,3 diaryl-
ethenes,4 spiropyrans,5 and thioindigos,6 play an important role
as molecular switches based on such recognition performance.
Although it is reported that aryl-substituted hemithioindigos
have the photochromic properties based on the E-Z isomeriza-
tion and also that the E-Z repeatability is good under the basic
conditions, they have been relatively little studied and their ap-
plications are limited to the shape-control of lipid membranes.7

Benzoyl-substituted hemithioindigos are expected to be availa-
ble as molecular switches because they have two carbonyl moi-
eties, which are good acceptors for the hydrogen bonding in mo-
lecular recognition performance. Here we wish to demonstrate a
novel photochromic behavior caused by the photodimerization,
instead of the usual E-Z isomerization, of 2-benzoylmethy-
lene-7-ethylbenzo[b]thiophen-3(2H)-one (1).

Benzoylhemithioindigo 1 was synthesized in 46% yield by
the reaction of 7-ethylbenzo[b]thiophen-3(2H)-one with phenyl-
glyoxal in toluene.8 From the reaction mixture, only Z isomer
was isolated and the formation of the other isomer was not de-
tected. The Z-configuration of the product was determined by
the deshielded olefinic proton (�8.11) in 1HNMR spectra and
by X-ray analysis. The ORTEP view also shows that the �-
stacking is with the reverse direction and its separation distance
is 3.59 �A (Figure 1).8

A toluene solution of 1 is yellow and absorbs at �max of
463 nm in UV–vis spectra. When irradiated with 463 nm light,
1 keeps emitting brilliant red fluorescence (�em 599 nm) in the
solid state. However, irradiation of its toluene solution brought
about photobleaching. The resulting product was easily isolated;
its 1HNMR analysis supports the head to head dimerization and
the trans-configuration of two benzoyl groups. Further analysis
by X-ray crystallography shows that the product is not the

[2+2] cycloadduct but the [2+4] type of the cycloadduct 2,
which is a diastereoisomer with all trans-configurations between
the adjacent carbonyl moieties (Figure 2).8

If we consider molecular orbital interactions, we find that
concerted [2+2] cycloadditions are permitted in photocycload-
ditions of olefins. But in an exceptional case such as enones,
photocycloadditions are reported to proceed via biradical inter-
mediates.9 Therefore, in this case, the formation of the [2+4] cy-
cloadduct 2 is speculated to be via the biradical species that is
directly formed at the primary step or via the cleavage of the
once-formed [2+2] cycloadduct. One reason why the Z-E iso-
merization is not observed in the case of 1 is ascribed to the rel-
ative instability of the E isomer or to the relative stability of the
Z isomer. The calculated difference in total energy between the
E and Z isomers is rather large (�E ¼ 14:11 kcalmol�1, based
on the calculation at B3LYP/6-31G� level) for 1, which is in
sharp contrast to �E ¼ 3:93 kcalmol�1 for the analogous 4-me-
thoxyphenylmethylenehemithioindigo that performs the usual
E-Z isomerization.10 The trans-configuration between the adja-
cent carbonyl moieties of 2 is thought to arise from the electro-
static and steric repulsions between the carbonyl groups.

A toluene solution of 2 does not absorb visible light and so is
stable to the visible light. 2 is also thermally stable and remains
unchanged for more than 2 days at room temperature. However,
heating at 70 �C accelerates the dissociation to 1; the time-de-
pendent change of the dissociation could be traced by the
1HNMR analysis. The results follow a first-order reaction; the
rate constant was estimated to be k ¼ 0:22 h�1 (70 �C) on the ba-
sis of the k-plot. Heating at 100 �C for 10min completely recov-
ered 1. Reversible interconversion between the photodimeriza-
tion of 1 and the thermal dissociation of 2 was monitored
several times using a C6D5CD3 solution of 1� 10�2 M. The re-
sults are summarized in Figure 3; they show good repeatability
between 1 and 2.

Thus, irradiation of the benzoyl-substituted hemithioindigo
1 produced the [2+4] type of cycloadduct 2, instead of the
[2+2] cycloadduct and the E-Z isomerized product. Cycload-
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Figure 1. ORTEP view of 1.
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Figure 2. ORTEP view of 2.
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duct 2 is stable at room temperature but is completely dissociat-
ed to 1 on heating. This reversible photochromic property based
on the photodimerization of benzoylhemithioindigo 1 can be ap-
plied to molecular switches. The role of 1 as a photoswitch in the
porphyrin-quinone recognition will be reported elsewhere.11

We thank Dr. T. Tsukuda and Professor T. Tsubomura for
the measurements of X-ray crystallography and for their helpful
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Figure 3. Repeatability between 1 and 2. ½1� ¼ 1� 10�2 M in
C6D5CD3.
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